{ "cells": [ { "cell_type": "markdown", "id": "49839009", "metadata": {}, "source": [ "# Import dependencies" ] }, { "cell_type": "code", "execution_count": null, "id": "bb8a880c", "metadata": {}, "outputs": [], "source": [ "#!/usr/bin/env python3\n", "import pandas as pd\n", "from scipy.optimize import linear_sum_assignment\n", "import prettytable as pt" ] }, { "cell_type": "markdown", "id": "8f2e14e2", "metadata": {}, "source": [ "# Read data\n", "Read the CSV file where I stored Google Form responses. The matrix has been\n", "transposed (rows = projects, columns = people) and the Borda count matrix score\n", "was evaluated subtracting 1 to poll responses (a score of 0 corresponds to the\n", "most desirable assignation)." ] }, { "cell_type": "code", "execution_count": null, "id": "cf13fa73", "metadata": {}, "outputs": [], "source": [ "df = pd.read_csv(\"form_responses.csv\", index_col=0)\n", "cost = df.values" ] }, { "cell_type": "markdown", "id": "391fd82c", "metadata": {}, "source": [ "# Solve the assignment problem using scipy" ] }, { "cell_type": "code", "execution_count": null, "id": "7efa127e", "metadata": {}, "outputs": [], "source": [ "row_ind, col_ind = linear_sum_assignment(cost)\n", "assignment = pd.DataFrame({\n", " \"Project\": df.index[row_ind],\n", " \"Assignee\": df.columns[col_ind],\n", " \"Cost\": cost[row_ind, col_ind],\n", "})" ] }, { "cell_type": "markdown", "id": "b5e6f5a2", "metadata": {}, "source": [ "# Show results" ] }, { "cell_type": "code", "execution_count": null, "id": "d4563429", "metadata": {}, "outputs": [], "source": [ "print(\"These are the best assignments:\")\n", "assignment[[\"Assignee\", \"Cost\", \"Project\"]].reset_index(drop=True)" ] }, { "cell_type": "code", "execution_count": null, "id": "ac221b1f", "metadata": {}, "outputs": [], "source": [ "print(f\"The total cost of these assignments was {assignment['Cost'].sum()}\")" ] } ], "metadata": { "kernelspec": { "display_name": "pytorch", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.13.9" } }, "nbformat": 4, "nbformat_minor": 5 }